Hepatocyte-specific NEMO deletion promotes NK/NKT cell– and TRAIL-dependent liver damage

نویسندگان

  • Naiara Beraza
  • Yann Malato
  • Leif E. Sander
  • Malika Al-Masaoudi
  • Julia Freimuth
  • Dieter Riethmacher
  • Gregory J. Gores
  • Tania Roskams
  • Christian Liedtke
  • Christian Trautwein
چکیده

Nuclear factor kappaB (NF-kappaB) is one of the main transcription factors involved in regulating apoptosis, inflammation, chronic liver disease, and cancer progression. The IKK complex mediates NF-kappaB activation and deletion of its regulatory subunit NEMO in hepatocytes (NEMO(Delta hepa)) triggers chronic inflammation and spontaneous hepatocellular carcinoma development. We show that NEMO(Delta hepa) mice were resistant to Fas-mediated apoptosis but hypersensitive to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as the result of a strong up-regulation of its receptor DR5 on hepatocytes. Additionally, natural killer (NK) cells, the main source of TRAIL, were activated in NEMO(Delta hepa) livers. Interestingly, depletion of the NK1.1(+) cells promoted a significant reduction of liver inflammation and an improvement of liver histology in NEMO(Delta hepa) mice. Furthermore, hepatocyte-specific NEMO deletion strongly sensitized the liver to concanavalin A (ConA)-mediated injury. The critical role of the NK cell/TRAIL axis in NEMO(Delta hepa) livers during ConA hepatitis was further confirmed by selective NK cell depletion and adoptive transfer of TRAIL-deficient(-/-) mononuclear cells. Our results uncover an essential mechanism of NEMO-mediated protection of the liver by preventing NK cell tissue damage via TRAIL/DR5 signaling. As this mechanism is important in human liver diseases, NEMO(Delta hepa) mice are an interesting tool to give insight into liver pathophysiology and to develop future therapeutic strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand (Trail) Contributes to Interferon γ–Dependent Natural Killer Cell Protection from Tumor Metastasis

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is expressed by in vitro activated natural killer (NK) cells, but the relevance of this observation to the biological function of NK cells has been unclear. Herein, we have demonstrated the in vivo induction of mouse TRAIL expression on various tissue NK cells and correlated NK cell activation with TRAIL-mediated antimetastatic fun...

متن کامل

JUNB/AP-1 controls IFN-γ during inflammatory liver disease.

Understanding the molecular pathogenesis of inflammatory liver disease is essential to design efficient therapeutic approaches. In hepatocytes, the dimeric transcription factor c-JUN/AP-1 is a major mediator of cell survival during hepatitis, although functions for other JUN proteins in liver disease are less defined. Here, we found that JUNB was specifically expressed in human and murine immun...

متن کامل

NK cells, but not NKT cells, are involved in Pseudomonas aeruginosa exotoxin A-induced hepatotoxicity in mice.

Pseudomonas aeruginosa exotoxin A (PEA) causes T cell- and Kupffer cell (KC)-dependent liver injury in mice. TNF-alpha as well as IL-18 and perforin are important mediators of liver damage following PEA injection. In this study, we focus on the role of NK and NKT cells in PEA-induced liver toxicity. Depletion of both NK and NKT cells by injection of anti-NK1.1 Ab as well as depletion of NK cell...

متن کامل

p21 in chronic and acute liver injury

p21 historically has been considered a tumor suppressor since first studies showed that p21-/-mice display spontaneous tumor formation after 16 months and additionally these mice are more sensitive to chemically induced carcinogenesis [1,2]. On the contrary, recently a potential function as an oncogene has been described for p21. For instance mice deficient for p53 spontaneously develop multipl...

متن کامل

NEMO Prevents Steatohepatitis and Hepatocellular Carcinoma by Inhibiting RIPK1 Kinase Activity-Mediated Hepatocyte Apoptosis

IκB kinase/nuclear [corrected] factor κB (IKK/NF-κB) signaling exhibits important yet opposing functions in hepatocarcinogenesis. Mice lacking NEMO in liver parenchymal cells (LPC) spontaneously develop steatohepatitis and hepatocellular carcinoma (HCC) suggesting that NF-κB prevents liver disease and cancer. Here, we show that complete NF-κB inhibition by combined LPC-specific ablation of RelA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 206  شماره 

صفحات  -

تاریخ انتشار 2009